Молекулярная диагностика генетических заболеваний: особенности и методы исследования
Генетический анализ крови – звучит дорого, сложно и долго. Но на самом деле, это уже стандартный метод диагностики в лабораториях. Генетические тесты теперь назначаются для оценки индивидуальной реакции на лекарства, для проверки наследственных заболеваний, установления родства и даже для профилактических целей.
С расшифровкой генома человека в ХХ веке, мы стали понимать, как наш личный “код” влияет на жизнь. Несмотря на споры в научной сфере, мы можем оценить полезность долгосрочных исследований: теперь доступна молекулярно-генетическая диагностика.
В данной статье мы расскажем, как проводится генетический анализ крови и для чего это нужно.
Молекулярно-генетическая диагностика – это новый метод обследования организма, который позволяет точно и быстро обнаруживать вирусы, инфекции, мутации генов, вызывающие патологию, а также делать оценку рисков наследственных и других заболеваний. В то же время это лишь небольшая часть возможностей исследования ДНК.
Наиболее значимым достоинством молекулярно-генетической диагностики является минимальное вмешательство, поскольку исследования проводятся in vitro. Данный метод успешно применяют для диагностики заболеваний у эмбрионов, а также у ослабленных и тяжелобольных пациентов. Кровь из вены является наиболее распространенным материалом для исследования, однако возможно выделение ДНК/РНК из других жидкостей и тканей, как, например, слюны, соскоба слизистой рта, выделений из половых органов, околоплодной жидкости, волос и ногтей.
Молекулярная диагностика – это значительный шаг к персонализированной медицине, поскольку она дает возможность учитывать все особенности конкретного пациента при диагностике и терапии.
Методы молекулярной диагностики широко используются в различных областях медицины. Рассмотрим основные задачи и сферы, где применяется данная технология.
- Выявление различных патологий. Для диагностики инфекционных и вирусных заболеваний, которые не удается определить традиционными методами, молекулярная диагностика является незаменимой. Благодаря ей можно обнаружить болезнь на ранних стадиях, когда еще нет внешних клинических проявлений.
- Исследование аллергических реакций. Молекулярная диагностика позволяет точнее определить аллерген, не требует прямого контакта с аллергеном и при этом является безопасной для пациента.
- Индивидуальная оценка рисков наследственных заболеваний. Молекулярная диагностика помогает выявить наличие генетических мутаций и определить риск передачи наследственной патологии. Знание об этом позволяет проводить профилактику болезней на основе изменения образа жизни.
- Перинатальная медицина. Методы молекулярной диагностики незаменимы для определения состояния здоровья эмбрионов, включая выявление синдромов Дауна, Эдвардса, Патау и других. Также они используются в области вспомогательных репродуктивных технологий.
- Фармакогенетика. Молекулярная диагностика позволяет определить, какие лекарства максимально эффективны у конкретного пациента, что особенно важно при лечении тяжелых заболеваний, включая онкологические.
- Спортивная медицина. Молекулярная диагностика также находит применение для определения спортивных перспектив, в том числе для узнавания, какой вид занятий принесет наибольшую пользу для здоровья или поможет достичь спортивных результатов.
Медики всерьез рассматривают перспективу персонализированной терапии, позволяющей подбирать препараты исходя из генетических особенностей каждого пациента. Молекулярная диагностика - это один из ключевых элементов такого подхода, который может значительно уменьшить риски побочных эффектов и увеличить эффективность лечения.
Генетические исследования становятся актуальными в тех случаях, когда пациенту необходимо узнать информацию о своем здоровье. Это может понадобиться в следующих ситуациях:
- Для точной диагностики. Например, неправильно определенный аллерген или несвоевременно диагностированное вирусное заболевание может привести к неэффективному лечению.
- Для профилактики возможных заболеваний. Если есть повышенный риск заболевания раком или сердечно-сосудистыми заболеваниями, то пациент может принимать соответствующие меры, например, отказаться от вредных привычек.
- Для повышения эффективности лечения. Онкозаболевания имеют множество вариантов лечения, и выбор правильной тактики способствует более эффективному лечению.
Одной из отдельных групп генетических исследований являются исследования ДНК, которые проводятся в связи с планированием или рождением ребенка. В этом случае родители обращаются в лабораторию, чтобы:
- Изучить свою генетическую совместимость и оценить риски наследственных заболеваний будущего потомства.
- Исследовать состояние плода, чтобы выявить синдромы и опасные патологии.
- Диагностировать заболевания и аллергические реакции у младенца.
- Определить, какие спортивные занятия, что есть и какой образ жизни будут наиболее полезны для ребенка.
- Установить отцовство или материнство.
Этапы молекулярно-генетического исследования
При выборе метода молекулярно-генетического исследования необходимо выполнить следующие этапы:
- Взять биоматериал. Кровь пациента чаще всего используется для исследования. Полученный материал маркируется и отправляется в лабораторию.
- Выделить ДНК/РНК.
- Провести исследования в соответствии с выбранным методом.
- Изучить и интерпретировать результаты.
- Выдать заключение.
Современные методы молекулярно-генетической диагностики позволяют более точно определять наличие генетических заболеваний у человека. Эти методы используются для обнаружения наследственных мутаций или изменений в генах, которые могут привести к различным болезням.
Одним из основных методов является полимеразная цепная реакция (ПЦР), которая позволяет увеличить количество ДНК в образце до уровня, достаточного для детектирования наследственных мутаций.
Еще один метод - секвенирование ДНК, позволяющее выявить конкретные изменения в генах, связанных с разными наследственными патологиями. Современные методы секвенирования имеют высокую точность и позволяют обнаружить мутации в отдельных генах или даже во всей последовательности генома.
Также используются методы флуоресцентной гибридизации (ФГ), которые основываются на значительном различии между нормальной и измененной ДНК. Этот метод является очень чувствительным и может использоваться, чтобы обнаруживать очень редкие изменения в геноме.
Существуют также более новые методы молекулярно-генетической диагностики, такие как метод генной патологии и генной терапии, которые могут решить ряд наследственных заболеваний на генетическом уровне.
Молекулярная цитогенетика является эффективным методом выявления наследственных заболеваний, врожденных пороков развития и психических отклонений. Суть метода заключается в исследовании хромосом при помощи специальных микроматриц, которые наносят на ДНК-чипы. Один из основных этапов анализа - извлечение лимфоцитов из образца крови, которые затем помещают в питательную среду на 48-72 часа. После прохождения указанного времени производится их изучение. Этот метод назначается в основном для изучения причин бесплодия и невынашивания беременности. А также для установления диагноза у детей при подозрении на врожденные заболевания. Молекулярная цитогенетика очень точна, однако, поскольку результат можно получить только через 20-30 дней после проведения анализа, ее можно назвать трудоемкой и длительной процедурой.
Метод имеет как свои преимущества, так и недостатки. Одно из основных достоинств состоит в его специфичности, поскольку при помощи молекулярной цитогенетики можно выявить лишь небольшое количество патологий, включая аутизм. Однако, при этом метод достаточно точен и во многих случаях не допускает ошибок.
Название статьи: Метод ПЦР в молекулярной диагностике: особенности и применение
Метод полимеразной цепной реакции (ПЦР) считается самым популярным и фундаментальным в молекулярной диагностике, так как он позволяет выявлять патологии с высокой точностью и чувствительностью, а также обладает высокой скоростью проведения исследования. Метод был изобретен в 1983 году, и с тех пор его применение активно расширяется. Молекулярная диагностика ДНК/РНК методом ПЦР позволяет выявить различные заболевания, такие как ВИЧ, вирусные гепатиты, инфекции, передающиеся половым путем, туберкулез, боррелиоз, энцефалит и многие другие.
Особенностью метода является возможность выбора участка ДНК и его многократное дублирование в лаборатории с помощью специальных веществ. Биоматериал для диагностики может быть представлен кровью, слюной, мочой, выделениями из половых органов, плевральной и спинномозговой жидкостью, тканями плаценты и т.д. В зависимости от выбранного биоматериала и заболевания применяются соответствующие протоколы диагностики.
Таким образом, метод ПЦР в молекулярной диагностике имеет широкое применение и является необходимым инструментом для точной и своевременной диагностики многих заболеваний.
Популярный молекулярный метод исследования под названием флуоресцентная гибридизация (FISH) обеспечивает возможность исследования нуклеотидных соединений в определенных участках хромосомы. Для этого используются специально меченные флуоресцентными маркерами короткие ДНК-последовательности, так называемые зонды. Такой подход в исследовании атипичных генов стал популярным не только в онкологии для обнаружения остаточных злокачественных клеток после проведения химиотерапии, но и в пренатальной диагностике для выявления вероятности возможности развития у плода врожденных пороков, а также в гематологии.
Возможность проведения анализа пообещала все большую чувствительность и точность в выявлении поврежденных фрагментов ДНК с погрешностью около 0,5%. Кроме того, важно учесть, что результат тестирования можно получить достаточно быстро — в течение не более 72-х часов. Тем не менее, следует отметить, что данная методика имеет несколько недостатков в том числе - FISH очень специфичен и может служить лишь для подтверждения или опровержения предполагаемого диагноза.
Микрочипирование - новый способ молекулярной диагностики, основанный на использовании зондов, маркированных флуоресцентными последовательностями ДНК. Как и в случае с методом ФЛГ, для анализа может использоваться любой биоматериал, в котором находится ДНК/РНК. Однако, в отличие от ФЛГ, здесь пробы сначала извлекают из пациентов и затем сравнивают с образцами на микрочипе.
Микрочип представляет собой основание из стекла, пластика или геля, на которое наносят микротесты длиной от 25 до 1000 нуклеотидов. Зонды, полученные после очистки биоматериала, совмещают на микротестах чипа и наблюдают за реакцией маркеров. Результаты готовы через 4-6 дней после забора материала.
Микрочипирование широко применяется в онкологии и кардиологии, в том числе для изучения генетической предрасположенности. Он точен и чувствителен, но, к сожалению, в России этот метод используется редко.
Молекулярная диагностика - это неинвазивный и точный метод обследования организма, который может применяться в разных областях медицины. Однако, в России этот метод еще не получил должного распространения, и не все клиники могут предложить подобную услугу.
Важно отметить, что информация о здоровье и медицине, представленная в статье, не предназначена для самодиагностики или самолечения. Она имеет только ознакомительный характер.
Фото: freepik.com